Emergence of collective modes and tridimensional structures from epithelial confinement.

M. Deforet1, V. Hakim2, G. Duclos1, H. Yevick1 and P. Silberzan1

1Laboratoire Physico-Chimie Curie, Unité Mixte de Recherche 168, Centre de Recherche, Institut Curie, Centre National de la Recherche Scientifique, et Université Pierre et Marie Curie, Paris, France.

2Laboratoire de Physique Statistique, CNRS, Université P et M Curie, Université Paris Diderot, Ecole Normale Supérieure, Paris, France.

Pascal.silberzan@curie.fr

Many \textit{in vivo} processes, including morphogenesis or tumor maturation, involve small populations of cells within a spatially restricted region. However, the basic mechanisms underlying the dynamics of confined cell assemblies remain largely to be deciphered. We will present our recent study of this question using well-controlled in vitro experiments \cite{1}. Our observations show that confluent epithelial cells cultured on finite, population-sized domains, exhibit both collective rotation with stochastic reversals and low-frequency radial displacement modes. A simple model in which cells are described as persistent random walkers which adapt their motion to that of their neighbors \cite{2}, appears to capture the essential characteristics of these collective dynamics. As the confined epithelia mature further, they develop a tridimensional structure in the form of a peripheral cell cord at the domain edge. In our well-controlled setting, epithelial confinement by itself is thus observed to induce morphogenetic-like processes including spontaneous collective pulsations and transition from 2D to 3D.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{Left: Cells confined in a 150 μm domain. Center: Corresponding velocity field. Right: simulated velocity field from the theoretical model.}
\end{figure}
Figure 2: x-z profile at the edge of a domain several days after seeding. The pluricellular rim is globally polarized (red).

Acknowledgements:
We acknowledge funding from the Association pour la Recherche sur le Cancer, the Ligue Contre le Cancer, the Fondation Pierre-Gilles de Gennes pour la Recherche and the Programme Incitatif et Coopératif Curie “Modèles Cellulaires”. The Biology Inspired Physics at Mesoscales group is part of the CelTisPhyBio Labex.